A Linear Tuning Control System for Laser Array based on Xilinx Zynq

INTRODUCTION

Tunable lasers refer to lasers with continually adjustable output wavelength. These lasers are widely used in laser radar (LIDAR), optical coherence tomography (OCT), fiber grating sensor and other areas. On most occasions, **high linearity of laser wavelength** is a necessity of high accuracy and resolution ratio, whereas laser light sources with strict linear tuning is difficult to obtain.

Application of tunable lasers

Design architecture of the zynq system

Structure of the laser array and its control system

Data flow by the FSM method

The system achieves driving a **4×5 tunable laser array** to output scanning laser signal. By processing output signal as feedback, the system instantaneously adjusts the drive current to acquire better linearity of lasers' output wavelength. We combine with the **high performance of FPGA and the advantages of MPU programmability**. By modifying **BRAM data**, any scanned waveform can be output to achieve data correction.

Ruilin Tan, Yilin Chen, Yuan Cheng

Nanjing University, Jiangsu Province

C

R

E

A

V F

D E S

N G

OpenHW2022

R

E

S

U

On board test by PYNQ-Z1

The linear tuning control system shows great effect on the laser array. In the future, we try to integrate the function of controlling, feedback and data processing on only a FPGA board neither use PC to block the data flow.

Linear performance of laser array before and after correction

Integrated FPGA board of future design