
[Public]

INTRODUCTION

The motivation for a DNN Compiler lies in the 
diverse architecture environments, where each 
hardware platform utilizes unique APIs. This 
diversity requires the creation of specific code 
generating paths for different hardware 
configurations. The challenge arises from the need 
to adapt and optimize code generation paths to 
meet the specific requirements of each hardware 
environment. Therefore, the development of a 
DNN Compiler addresses this challenge by 
providing a flexible and efficient solution that can 
dynamically adjust to the varied architectures 
encountered in different hardware platforms.

Compiler for DNN Workloads on AMD GPUs

Future Work

• Extension on other benchmarks

– Current implementation is limited on fixed sized CNNs

– Extension on transformer or LLMs is expected

• Optimizations on Multi-tenant benchmarks

– Scheduling in multi tenant workloads are needed 

– Memory optimization for scaled situations are considered

• Expansion of backends

– Not only GPU, but NPU and cluster target backends

ONNX MLIR based system

Correctness verification

– Evaluated with 1000 iterations each with 
random value input

– Convolution with maxpooling and ReLU is found 
to be correct

– Extension with ROCblas is expected in future 
work

Motivation of DNN Compiler

D
E
S
I
N
G

C
R
E
A
T
I
V
E

Jumin Lee

On board test by AMD GPUs

Yonsei University, Korea

OpenHW2023

R
E
S
U
L
T

The ONNX graph-to-code converter serves as a publicly available 
compiler facilitating the transformation of ONNX models to the MLIR 
framework. This converter operates by providing an intermediate 
representation of DNN operations, including the definition of DNN-
related operations and an abstract API for each hardware. Leveraging 
LLVM calls for backend APIs, the compiler ensures a 1-to-1 mapping 
of DNN dialect to AMD GPU code. Furthermore, it handles translation 
for hardware-specific libraries and code, while optimizations are 
conducted at the DNN dialect level. This integrated approach enables 
efficient and hardware-adaptive compilation of ONNX models into 
the MLIR framework.


